

Managing Bioinformatics

Software

Managing Bioinformatics Software

2

Version 2018-10

Managing Bioinformatics Software

3

Licence
This manual is © 2018, Simon Andrews.

This manual is distributed under the creative commons Attribution-Non-Commercial-Share Alike 2.0

licence. This means that you are free:

 to copy, distribute, display, and perform the work

 to make derivative works

Under the following conditions:

 Attribution. You must give the original author credit.

 Non-Commercial. You may not use this work for commercial purposes.

 Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting

work only under a licence identical to this one.

Please note that:

 For any reuse or distribution, you must make clear to others the licence terms of this work.

 Any of these conditions can be waived if you get permission from the copyright holder.

 Nothing in this license impairs or restricts the author's moral rights.

Full details of this licence can be found at

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

Managing Bioinformatics Software

4

Table of Contents

Introduction ... 6

Basic Concepts ... 6

Shells ... 6

Where to install software ... 6

The search path ... 7

Types of programs ... 9

Tar files and Zip ... 10

Tar files .. 10

Zip files ... 10

Installing Software .. 12

System Package Managers ... 12

Yum and RPM .. 12

Dpkg and Apt ... 13

Binary Distributions .. 14

Dynamic libraries ... 17

Source Code Distributions ... 19

Downloading Source Packages ... 19

Pulling code from source code repositories ... 19

Compiling ... 19

Compilation troubleshooting .. 23

Extending other languages .. 26

Installing R packages .. 26

Core packages from CRAN ... 26

Bioconductor packages .. 27

Installation from Github .. 27

Manual installation ... 28

Installing Perl Modules .. 29

Installing from OS repositories ... 29

Automatic installation with the CPAN module.. 30

Manual installation ... 30

Installing Python Packages ... 32

Automatic installation with pip .. 32

Manual installation ... 33

Software package installation with CONDA ... 35

CONDA Usage .. 35

Installation .. 35

Managing Bioinformatics Software

5

Setting up channels ... 35

Installing software .. 35

Just use conda for everything then? ... 36

Applications need to be supported in conda .. 36

Conda should be treated as a closed system .. 36

Running Containerised applicationsA .. 37

What types of container are there ... 37

Finding a container .. 37

Installing a container with singularity ... 38

Installing Singularity ... 38

Installing a container .. 38

Running a container ... 38

Debugging ... 40

The program won’t start at all .. 40

Check you’re definitely running the program you think you are .. 40

Check the permissions on the file .. 40

If it’s a script, check the shebang line .. 40

If it’s a binary file check for broken links .. 41

The program gives an error when you run it ... 41

Read the error messages!! .. 41

Check arguments and file paths .. 42

Managing Bioinformatics Software

6

Introduction

This course is intended to be a general introduction to the topics you need to understand in order to be

able to install and configure new software in a Unix or Linux environment. Nothing in the course is

inherently specific to bioinformatics, but we intend to focus on the types of software and environments

most frequently used in bioinformatics. This course is not a comprehensive coverage of every possible

scenario you will encounter but should hopefully cover the most common use cases and types of failure

you will see.

Depending on the system you are working on you may or may not have systems administrator privileges

on your machine. Some of the operations described in this course will require root (system level)

access, but a lot of what you will commonly need to do can also be accomplished as a normal user.

Where possible we will try to make clear exactly which parts of the instructions would require root

privileges, and what alternatives might be available if you are running as a normal user.

Basic Concepts

For the purposes of this course we start from the assumption that you have some basic knowledge of

how to use a Unix environment. Specifically we won’t cover how to connect to your system or basic file

system operations (changing directory, moving, copying or linking to files etc.). If you are not familiar

with Unix to this level then it would be worth attending an introductory Unix course before going into the

material here.

Before we get into the specifics of software installation though we should go through some basic

concepts which will be important to understand for many of the topics later covered in this course.

Shells

A shell in Unix is the piece of software you use to interact with the system. It is the program which

reads the commands you type and launches the appropriate software. As well as being command

interpreters, shells also provide a simplified programming environment and can be used for basic

programming and automation of repetitive tasks.

Whilst some aspects of software installation and usage are generic and apply to all shells, other

commands used will differ based on the shell you are using. In this course we are going to assume that

you are using the “bash” shell, which is the default on most Unix systems you are likely to encounter.

If you are using a shell other than bash you will need to look up the equivalent functions in your own

shell. We will aim to point out when functions discussed will differ between shells.

Where to install software

From a technical perspective you can install software pretty much anywhere you like on a Unix system,

some locations will take a bit more configuration than others, but there is no technical limit to where you

can put software. Having said that there are a number of locations in which it is more common to find

software which has been installed.

Managing Bioinformatics Software

7

 /bin and /usr/bin are the directories where most software installed and managed by the

operating system and intended to be run by normal users reside

 /sbin and /usr/sbin are for system managed software which is primarily intended to be run

by administrators, and isn’t generally useful to normal users

 /usr/local/bin or /opt/bin are the normal location for additional software installed by

administrators which isn’t managed by the operating system and is available to all users

On some systems you will have other locations for system wide software, but there is no standard for

these locations – you will have to ask the administrators of your system about these.

As a normal user you can install software in your home directory* but this will generally only be available

to you. Likewise you can often install extensions or packages to other languages in your home directory,

and your local copies will normally take precedence over any copies installed at the system level.

*The caveat here is that it is possible for administrators to designate certain areas of the file system as

‘noexec’, meaning that you can’t run programs installed in those areas. Normally if home directories

have been set up with this restriction then you should have been informed, but you can always check

with your administrator.

The search path

One key concept to understand when installing software is the search path. This is the mechanism by

which your shell will decide which executable to run when you type in the name of a program.

The search path is simply an ordered list of directories on your system within which executable files

might reside. When you enter the name of a program to run your system will systematically step through

the directories in the path until it finds a match to the program. Once it’s found a match it will launch

the program and will stop looking for further matches.

The search path allows us to solve a number of common problems:

1. How do I tell the system about a new program I’ve just installed

2. How does the system decide which program to run when two or more copies of a program are

present in different directories

When you launch a program you can do it in one of two ways;

You can just type the name of the program – if you do this then the system will work through the path

to find a match and will stop at the first hit it finds. If no hit is found then you will get a “Command not

found” error.

You can type the path to the program. If you want to run a program which isn’t in the path, or you want

to run a copy which isn’t the first within the path then instead of just giving the program’s name you can

provide a path to the program. This can be an absolute path like /home/me/runme or a relative path

such as ../../bin/runme. If a path is provided then no search is done. It is worth noting that in

general the directory you are in is NOT in the search path, so if you want to run a program which is in

the current directory you can’t generally just run runme, you need to do ./runme to tell the shell that

you want to run the copy in the current directory.

You can see your current path by running (in bash) echo $PATH

You should see something like this:

Managing Bioinformatics Software

8

$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/opt/X11/bin

It can also be useful to check where in the path a particular program was found (it’s easy to not be

running the copy of a program you thought you were). You can do this using the which command

followed by the command name you want to search for.

$ which nano

/usr/bin/nano

Your path is set up by a series of different configuration files in your system, some available only to your

sysadmin, and some which you can modify. The path is what is termed an environment variable – a

named piece of data stored by your shell. You can temporarily modify an environment variable in bash

using the export command;

echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/opt/X11/bin

$ export PATH=/home/andrewss/bin

$ echo $PATH

/home/andrewss/bin

Rather than replacing the existing path it is more common to simply append new directories to it. Since

it is an ordered structure you normally add new directories to the front so they get found before the ones

which were there already.

$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/opt/X11/bin

$ export PATH=/home/andrewss/bin:$PATH

$ echo $PATH

/home/andrewss/bin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/opt/X11/bi

n

NB: Note that when you are using the path variable you need to use $PATH, but when you are setting

it you omit the $ and just use PATH.

Changes made in this way will affect only the shell you are currently using and their effect will disappear

as soon as the shell exits. If you want to make this change permanent you can put the commands into

a file called .bashrc in your home directory. Commands in this file will be run every time a new bash

shell is started so changes made there will be effectively permanent.

Managing Bioinformatics Software

9

Types of programs

There are generally two types of executable file on any Unix system.

1. Binary executables

2. Scripts

Ultimately a platform specific binary executable is what you need. These executables are tied

specifically to the type of processor you have x86 vs ARM, 32bit vs 64bit etc. The same source code

can often be used to compile executables for different platforms. You can move executable files

between different machines but they will only work if the new machine has the same CPU architecture

as the one for which the executable was originally compiled.

Scripts are files of text based source code which are not intended to be run directly, but instead are

designed to be passed to a separate executable interpreter. Although you appear to run the script,

what you are actually doing is running the interpreter and passing the contents of the script to it as data.

On Unix scripts work because of a convention in their first line (the header line). If a script file adheres

to this format then the system will locate the interpreter and run that, passing the script as an argument.

This first line is often called the ‘shebang’ line, and has the structure:

#![interpreter location]

..so it could be:

#!/usr/bin/perl

#!/usr/bin/python

#!/bin/bash

..in each case the appropriate listed interpreter will be located and run when the script is executed. The

location of the interpreter will be taken from the script, even if a different location for the same interpreter

is found in the path.

Since the location of a specific interpreter might not be the same on all systems (my Perl might be in

/usr/local/bin for example) then another common structure for the first line of a script file is to use

the /usr/bin/env program which can then be passed a program name, and this will then use the first

instance of that program in the search path to specify the interpreter for the rest of the script.

So, for example, if I have a script which starts with

#!/usr/bin/perl

Then the Perl interpreter in /usr/bin will be used to execute the script. If, however, I use

#!/usr/bin/env perl

Then the first instance of Perl in the PATH directories will be used instead.

Managing Bioinformatics Software

10

Tar files and Zip

Most software will be distributed in some kind of archive file format. The most common formats you will

encounter will be the tar and zip formats. Knowing how to manipulate these formats will be important

to being able to work with software installations.

Tar files

Tar files are a format designed simply to bundle together a file and directory structure in a single file in

order to make them easier to deal with. Originally tar was used to save data to tape (tar = tape archive),

but these days it’s mostly used to bundle files together. Tar is a really useful format for Unix files since

it supports pretty much all of the extended attributes associated with these files so it’s easy to distribute

files which are all configured correctly as soon as they are extracted.

The tar file format doesn’t itself have any compression associated with it, but a couple of different

compression schemes are now routinely used with tar so that you gain the benefits of compression on

top of the bundling. Compressed tar files are indicated by their file extension

 .tar = plain uncompressed tar file

 .tar.gz = gzip compressed tar file

 .tar.bz2 = bzip2 compressed tar file

Because the compression is added after the tar file is created you can remove it separately from

unbundling the tar file contents, but most of the time people will do both operations in a single step.

The main things you need to specify when working with a tar file are:

1. Whether you are creating a new tar file or extracting from an existing one

2. Whether you want to use compression, and if so, which scheme

3. What the name of the tar file is

4. The names of the files you want to add or extract

A tar command looks very similar whether you are adding or extracting data. Let’s go through the

options:

1. To create a new tar file use the c flag. To extract use the x flag. You can also list the contents

of a tar file without extracting by using the t flag.

2. To use gzip compression use the z flag. To use bzip2 use the j flag

3. To specify the tar file use the f flag immediately followed by the file name. If putting the f flag

as part of a group of flags make sure it’s at the end.

4. Specify the names of the files you want to add or extract. If you want to extract everything you

can omit this step.

5. If you are extracting you finally want to say where to extract to. If you don’t specify this then it

will extract to the current working directory.

Zip files

Whilst tar files are mostly considered to be a Unix file format, zip files are more commonly found on

desktop operating systems. They fulfil a similar role to tar files and many software packages are

distributed in zip format.

Unlike tar files, zip files have somewhat reduced support for the full range of permissions and attributes

which can be present on files in a Unix file system. You might therefore find that you need to run some

additional commands to set permissions after extracting from a zip file.

Managing Bioinformatics Software

11

The basic operation for a zip archive is to use the unzip command to decompress it into the current

folder. Normally no additional arguments are necessary beyond the path to the zip archive itself.

Managing Bioinformatics Software

12

Installing Software

System Package Managers

Virtually all modern Linux systems come with a suite of pre-built software which the user can opt to

install. This is distributed as a set of ‘packages’ which are simply bundles of files which contain the

executables and data files for a particular application, plus some metadata to describe the functionality

they provide, and to list any dependencies they have in terms of other packages which need to be

installed for this package to work.

To make it easier to work with packages, these systems also provide package managers which are

programs which automate the process of fetching and installing packages and their dependencies.

Most of the time when you’re working with packages you will interact with the package manager, and

not with the lower levels of the system.

Package managers will inherently require admin privileges so they are of no use to normal users.

However, they are the easiest way to install new programs or libraries onto a system.

On a system which uses a package manager it is usually the case that only files installed through the

package manger will reside in the main system directories /usr /bin /lib etc. Files coming from

software installed system-wide, but not through the package manager, would generally go into

/usr/local or /opt.

Package managers are a closed system which means that they only recognise files installed by the

package manager. This has consequences for the resolution of dependencies, so that program fred

lists program bob as a dependency, then even if bob has been manually installed it won’t be recognised

since it wasn’t installed through the package manager.

Whilst you would normally use these systems for working with the suite of software provided by the

operating system, sometimes people will distribute new software in these packaged formats. In these

cases you can install these new files through the same system you use to manipulate your system

software.

Yum and RPM

On any RedHat or CentOS based systems the packaging system is based around RPM (Redhat

Package Manager) files. These have the rpm program to manipulate them, but generally you interact

with this system through the yum (yum updater modified – Unix does love a recursive acronym)

program, which is how you’d normally install and remove packages.

Basic operations using yum are:

To search for a package to install you do yum search [package name]

To install a package you would do yum install [package name]

To update a package to the latest version you can do yum update [package name]

You can do the search as a normal user, but to install a new package or update an existing package

will require root privileges so you’d normally run those commands through sudo.

If you need to install some external software which has been distributed as an rpm file then you can do

this through the lower level rpm system (and often the install instructions will tell you to do this), but this

won’t install any dependencies if they exist, so it’s much easier to do this through yum by using.

Managing Bioinformatics Software

13

yum localinstall new_software.rpm

Apt and DPKG

On Debian based systems such as Debian, Ubuntu, Mint etc., the equivalent package managers are

dpkg which interacts with the deb (Debian package) file format and apt, which is the program you

would interact with to perform most operations.

To search for a package to install you do apt search [package name]

To install a package you would do apt install [package name]

To update a package to the latest version you can do apt upgrade [package name]

To remove a package you would do apt purge [package name]

If you have a manually distributed .deb file then it is best to install it using apt since it will be able to

resolve any additional dependencies and install those as well as the package you downloaded. To do

this you simply do:

apt install ./downloaded.deb

As with many of these systems level operations, the installation or removal of software is not something

a normal user can do, so you’d therefore need to use sudo for all of the commands above to elevate

your privileges to root and allow you to perform the installation.

Managing Bioinformatics Software

14

Binary Distributions

For software sourced outside your operating systems package manager the simplest type will be a

binary installation. In this case the provider of the software will have already done the compilation to

platform specific binary executables so all you need to do is to download these to your system. This

would also apply to software which consisted only of scripts such that the interpreters would already be

on your system.

To install binary software you will first need to locate the correct binary package for the system you’re

working on. The important parameters will be your operating system and type of CPU. For the CPU

the most important distinction is usually whether you have a 32 bit or a 64 bit system. Most modern

systems are 64 bit and you should always aim to run 64 bit software on a 64 bit system. If you’re not

sure what your system is you can run uname -m which should tell you the hardware platform you’re

using.

Once you’ve downloaded the correct binary package you will need to extract it so you can see the

directory structure within it. If you’re installing for just yourself you can extract to your home directory,

but if you’re doing this for all users of a system then you would normally extract it to a folder within the

/opt directory.

Inside the directory you extracted you may well find files called README or INSTALL, which may give

you specific installation instructions. If these are present then you should follow them rather than doing

a generic installation.

If no specific install instructions are visible then you should be able to see the executable files for the

program you’re installing – these may be at the top level, or they could be in a ‘bin’ directory within the

installation. You should at this point be able to run the software by providing a direct path to these

binary files – if this doesn’t work then there’s no point going any further, but if this does work then your

final job is to put the location of the executable files into your PATH. Instructions for doing this were in

the earlier section describing how the PATH works.

Below is an example of installing a binary distribution of the bowtie2 read mapper onto a Linux x86_64

system.

The downloads page offers a few different files, but the one we want is the Linux 64 bit file.

Managing Bioinformatics Software

15

We could download this through a browser, but in our case we copied the URL and use the command

line wget program to fetch the file.

$wget http://downloads.sourceforge.net/project/bowtie-

bio/bowtie2/2.2.9/bowtie2-2.2.9-Linux-x86_64.zip

$ ls

bowtie2-2.2.9-Linux-x86_64.zip

This is a zip file so we need to unzip it

$ unzip bowtie2-2.2.9-Linux-x86_64.zip

$ ls -l

drwxrwxr-x 5 andrewss bioinf 4096 Apr 21 23:40 bowtie2-2.2.9

-rw-r--r-- 1 andrewss bioinf 27073243 Apr 21 23:22 bowtie2-2.2.9-Linux-x86_64.zip

We can now move into the newly created bowtie2-2.2.9 folder and see what’s in there.

$ cd bowtie2-2.2.9

$ ls

AUTHORS bowtie2-build-s LICENSE

bowtie2 bowtie2-build-s-debug MANUAL

bowtie2-align-l bowtie2-inspect MANUAL.markdown

bowtie2-align-l-debug bowtie2-inspect-l NEWS

bowtie2-align-s bowtie2-inspect-l-debug scripts

bowtie2-align-s-debug bowtie2-inspect-s TUTORIAL

bowtie2-build bowtie2-inspect-s-debug VERSION

bowtie2-build-l doc

Managing Bioinformatics Software

16

bowtie2-build-l-debug example

In this case there is no README or INSTALL file, but we can see the bowtie2 executable file. We

should check that the file is flagged as executable.

$ ls -l bowtie2

-rwxrwxr-x 1 andrewss bioinf 18489 Nov 11 17:03 bowtie2

It is already executable so we should be able to run it. If it wasn’t we’d have needed to run chmod 755

bowtie2 to set the executable flags for all users.

We can now try to run that to make sure it works.

$./bowtie2

Bowtie 2 version 2.2.9 by Ben Langmead (langmea@cs.jhu.edu,

www.cs.jhu.edu/~langmea)

Usage:

 bowtie2 [options]* -x <bt2-idx> {-1 <m1> -2 <m2> | -U <r>} [-S <sam>]

So this works, the last part would be to add this to our path to make it work everywhere. We’ll do this

temporarily as an example, but you could put this into ~/.bashrc or /etc/bash_profile to make

the change permanent.

$ cd

$ bowtie2

-bash: bowtie2: command not found

$ export PATH=/home/andrewss/bowtie2-2.2.9/:$PATH

$ bowtie2

Bowtie 2 version 2.2.9 by Ben Langmead (langmea@cs.jhu.edu,

www.cs.jhu.edu/~langmea)

Usage:

 bowtie2 [options]* -x <bt2-idx> {-1 <m1> -2 <m2> | -U <r>} [-S <sam>]

Managing Bioinformatics Software

17

Dynamic libraries

One possible consideration for binary installations, which will again be relevant for source code

packages are dynamic libraries on your system.

In general there are two types of binary executable which can run on a Linux system:

1. Statically compiled executables

2. Dynamically compiled executables

In a statically compiled executable all of the code needed to run the program is contained within the

executable itself. There is no dependency on any other part of the system. This is a very safe option

because it doesn’t rely on anything else, but it’s not very efficient, and it can make updating difficult.

In a dynamically compiled executable, some parts of the code are pulled from other binaries elsewhere

on the system. In addition to program files, Linux systems also contain a large number of ‘libraries’

which are binary files containing executable code, but which just provide isolated snippets of

functionality designed to be taken up by other programs. They aren’t designed to be run as a program

directly.

By using libraries you can easily bring complex functionality into a new program. By referring to a

central copy of the library providing that functionality you can also save space by keeping just a single

copy of commonly used code. If bugs or security problems are found with code in a library it is also

easy to update it, without having to do anything to the set of programs which dynamically call it.

You can tell whether a binary program is statically or dynamically compiled by using the file program.

$ file /sbin/grub

/sbin/grub: ELF 32-bit LSB executable, Intel 80386, version 1 (GNU/Linux),

statically linked, for GNU/Linux 2.6.18, stripped

This is a statically linked program which is completely self-contained.

$ file /usr/bin/ssh

/usr/bin/ssh: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),

dynamically linked (uses shared libs), for GNU/Linux 2.6.18, stripped

This is dynamically linked and will pull additional functionality from library files.

A dynamically linked executable file will not run if any of the libraries it links to are missing, broken or

the wrong version. In the same way that the PATH variable determines which folders contain

executables, the LD_LIBRARY_PATH variable says which folders to look for libraries in. In addition to

the folders listed in LD_LIBRARY_PATH, those listed in /etc/ld.so.conf will also be searched.

To see which libraries will be used to satisfy the requirements for a program you can use the ldd

program.

$ ldd /usr/bin/ssh

 Linux-vdso.so.1 => (0x00007ffc0998c000)

 libfipscheck.so.1 => /lib64/libfipscheck.so.1 (0x00007f01e3675000)

 libseLinux.so.1 => /lib64/libseLinux.so.1 (0x00007f01e3455000)

 libcrypto.so.10 => /usr/lib64/libcrypto.so.10 (0x00007f01e3072000)

 libutil.so.1 => /lib64/libutil.so.1 (0x00007f01e2e6f000)

 libz.so.1 => /lib64/libz.so.1 (0x00007f01e2c58000)

 libnsl.so.1 => /lib64/libnsl.so.1 (0x00007f01e2a3f000)

 libcrypt.so.1 => /lib64/libcrypt.so.1 (0x00007f01e2808000)

Managing Bioinformatics Software

18

 libresolv.so.2 => /lib64/libresolv.so.2 (0x00007f01e25ed000)

 libkrb5.so.3 => /lib64/libkrb5.so.3 (0x00007f01e20cc000)

 libk5crypto.so.3 => /lib64/libk5crypto.so.3 (0x00007f01e1e9f000)

 libcom_err.so.2 => /lib64/libcom_err.so.2 (0x00007f01e1c9b000)

 libnss3.so => /usr/lib64/libnss3.so (0x00007f01e1960000)

 libc.so.6 => /lib64/libc.so.6 (0x00007f01e15cb000)

 libplc4.so => /lib64/libplc4.so (0x00007f01e13c6000)

 libdl.so.2 => /lib64/libdl.so.2 (0x00007f01e11c2000)

 /lib64/ld-Linux-x86-64.so.2 (0x000000376a400000)

 libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f01e0933000)

 libnssutil3.so => /usr/lib64/libnssutil3.so (0x00007f01e070d000)

 libplds4.so => /lib64/libplds4.so (0x00007f01e0509000)

 libnspr4.so => /lib64/libnspr4.so (0x00007f01e02cb000)

Each line lists a dependent library for that program. The requirement is satisfied if it lists a library path,

along with a memory location where it is loaded (eg /lib64/libz.so.1 (0x00007f01e2c58000)),

or if it just has a memory location – which means it’s satisfied by code in the kernel, eg (Linux-

vdso.so.1 => (0x00007ffc0998c000))

If you find a dependency which isn’t satisfied then you will see the right-hand side say “Not found”

$ ldd jellyfish

 Linux-vdso.so.1 => (0x00007ffd4a352000)

 libpthread.so.0 => /lib64/libpthread.so.0 (0x000000376b400000)

 libjellyfish-2.0.so.2 => not found

 libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x0000003770400000)

 libm.so.6 => /lib64/libm.so.6 (0x000000376ac00000)

 libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x000000376f000000)

 libc.so.6 => /lib64/libc.so.6 (0x000000376a800000)

 /lib64/ld-Linux-x86-64.so.2 (0x000000376a400000)

This means that you will need to either install the missing library into a standard location, or install it

somewhere else and add that new folder to LD_LIBRARY_PATH.

Managing Bioinformatics Software

19

Source Code Distributions

If a pre-compiled binary distribution isn’t available for the platform you wish to run on then you may

need to download a source code distribution and compile the software locally.

Downloading Source Packages

The first step in this installation will be to download the source code you need. Depending on the project

you’re working with you may either have to pull the code straight from their version control repository,

or you might download an archive file of code. Be careful when downloading that you’ve pulled down

the appropriate code. You may well find that the most obvious download link you find is the current

development version of the software and not the last stable release. You should generally work with

the most recent stable release unless you have a specific reason to select another branch of the code.

Pulling code from source code repositories

One of the most common ways to get hold of a project’s source code is to pull it directly from their

version control system. There are many different systems but the most commonly used ones are git,

subversion and mercurial. All of these require you to have installed the client application for the version

control system on your machine first – these will normally be available from your system’s software

packages, but if not then binary downloads for all of these are available.

In this course we’re not going to go into the intricacies of how to use these version control systems,

we’re going to do the simplest operation which is to use them to pull down a copy of the code for a

project.

In each case you will need to find the URL for the branch of the code you want to check out. Depending

on how the repository is set up this might be a simple http:// or https:// web url, it might be an

ssh:// url direct into their server or it might be using a custom protocol such as svn:// or git://.

The project page should give you the details of this.

To clone a repository branch in git you would use:

git clone [repository url]

For subversion you would use

svn co [repository url]

For mercurial you would use

hg clone [repository url]

Each of these commands will bring down all of the source code, but will also configure the repository in

such a way that if you later want to update to the latest version of the code you can simply go back into

the folder you created and run one of:

git pull

svn update

hg pull && hg update

Compiling

For some projects the code you download is functional without an additional compilation step – this

would apply to projects which distribute code in scripted languages such as Perl or Python. For projects

Managing Bioinformatics Software

20

written in compiled languages such as C or C++ you will need to compile the source code to produce

executables which you can then install in the system.

As with the binary distributions the easiest thing to do is to look within the files you’ve downloaded to

see if there is an INSTALL or README file which details the correct compilation and installation

procedure for this software. If there is then you should follow those instructions, if not then you can see

if one of the common compilation routines will work.

For C and C++ programs there are a common set of tools which you will need to have available in order

to compile new software. The most important parts will be the compiler itself, which is the program

which interprets the source code and produces platform specific binary files. The most common

compilers are the GNU standard compiler gcc (and gcc++ for C++) or clang which is most commonly

found on OSX, but also works on other operating systems. Well written C or C++ can normally be

compiled by any valid compiler, but you will often find that in practice the project may be much easier

to compile with one compiler than another.

In addition to the compiler you will normally need a ‘make’ system, which is a piece of software used to

coordinate the somewhat complex process of building a large software project. The most common

make systems are the gnu make program (just called make) or cmake. The make system to use is

determined by how the project has been set up – the authors get to choose this, not you.

Finally, most C/C++ programs will also rely on the presence of a number of different libraries. These

are separate packages which provide functionality not in the core language, and which are used so that

the program authors don’t have to implement everything themselves within their code. Some libraries,

such as the standard C library (libc or glibc) are used in pretty much every compiled program, some are

used fairly commonly (the boost libraries for example) and some are more specialised and will only be

required by a smaller subset of software (libraries dealing with network communication or compression

for example). We will talk more about libraries in the debugging section below.

In some cases the software will be distributed with a fixed make file, so that all you need to do to run

the build is to type ‘make’ and it will do the rest.

More commonly though, software will have been configured with a system called autotools. This is a

configuration system which can check for the presence of pre-requisites and can modify the way the

compilation works based on the capabilities of the system the build is running on. An autotools

installation is the most common type of standard compilation, so we’ll look at this in more detail.

Autotools compilations have four steps to them:

1. Configuration

2. Compilation

3. Testing

4. Installation

The configuration step is started by moving into the top level directory of the project to compile and

running:

./configure

This can be modified by passing additional arguments to configure to change how it behaves. Many of

these options will be project specific to add or remove functionality from the program, or to manually

specify the location of specific dependencies the program might have. You can in many cases see

what options you have by running:

./configure –help

Managing Bioinformatics Software

21

One option which is also set here though is the final installation location of the compiled program. The

normal behaviour of autotools is to install the final binaries under /usr/local. If you want to install

the program somewhere else you need to specify prefix=[folder to install to] in the

configure options.

Configure will run a large batch of tests to assess the functionality of your system, compiler and libraries.

It will check this against the requirements of the program. If all of the dependencies aren’t met then it

should hopefully give you an intelligible error message to say what it requires which you are missing.

If configure completes successfully then it will write out a customised make file (called Makefile) which

allows you to move onto the compilation stage.

Once you have a valid Makefile you can run the compilation by running:

make

This will run the compilation in a single thread on your machine. If you have multiple cores on your

machine you can allow make to use these by instead running:

make –j [number of cores to use]

This should make your build complete substantially faster since many parts of the build process can

normally be run in parallel.

After make has completed you should test your installation before installing it. Most projects will come

with a built-in test suite which can be run by running:

make test

Hopefully these will all pass, which means you can proceed to the final installation of the compiled

binaries by running:

make install

This will write the compiled objects to either the directory you specified at the configure stage, or to

/usr/local if you didn’t specify anything.

The configuration, building and testing phases of this process do not require administrator privileges,

and should always be run as a normal user. For the final installation stage, if you are installing system-

wide you should use elevated privileges for the final make install. If you are installing into a directory

you own already though, you can run this as a normal user too.

Here is an example of downloading and compiling the latest ncbi-blast codebase. This is distributed as

a source tarball so we’ll download that rather than pulling from a source repository.

$ wget ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ncbi-blast-2.3.0+-src.tar.gz

$ tar -xzvf ncbi-blast-2.3.0+-src.tar.gz

We can now move into the ncbi-blast-2.3.0+-src folder which was created. In there we find just a single

folder called c++, which we also have to move into. In this inner folder we find a standard autotools

configure script.

$ ls

configure.orig

configure

scripts

Managing Bioinformatics Software

22

include

src

compilers

We can now run the configure script, opting to install in a non-standard directory.

$./configure --prefix=/home/andrewss/blast

[cut lots of stuff]

To build everything: cd /home/andrewss/ncbi-blast-2.3.0+-

src/c++/ReleaseMT/build && make all_r

or simply run make in the current directory

******* CONFIGURATION SUCCESSFUL *******

We can now run the compilation and spread this over 16 cores.

$ make -j 16

This will take a while to complete and will generate a lot of output. It is fairly common to see warnings

generated at this stage, but you shouldn’t get any errors.

We can see if this package has a test suite:

$ make test

make: *** No rule to make target `test'. Stop.

So in this case there isn’t one, so we can move ahead to install it.

$ make install

If we now look in the directory we specified as the install target we should see the newly added files.

$ ls /home/andrewss/blast/

bin include lib

$ ls /home/andrewss/blast/bin/

aalookup_unit_test delta_unit_test queryinfo_unit_test

aascan_unit_test dustmasker redoalignment_unit_test

align_format_unit_test gapinfo_unit_test remote_blast_unit_test

bdbloader_unit_test gencode_singleton_unit_test rpsblast

bl2seq_unit_test gene_info_reader rpstblastn

blastdb_aliastool gene_info_unit_test rps_unit_test

blastdbcheck hspfilter_besthit_unit_test scoreblk_unit_test

blastdbcmd hspfilter_culling_unit_test search_strategy_unit_test

blastdbcp hspstream_unit_test seedtop

blastdb_format_unit_test legacy_blast.pl segmasker

blastdiag_unit_test linkhsp_unit_test seqdb_demo

blastengine_unit_test makeblastdb seqdb_perf

blastextend_unit_test makembindex seqdb_unit_test

blastfilter_unit_test makeprofiledb seqinfosrc_unit_test

blast_formatter msa2pssm_unit_test seqsrc_unit_test

blast_format_unit_test ntlookup_unit_test setupfactory_unit_test

blasthits_unit_test ntscan_unit_test split_query_unit_test

blastinput_unit_test optionshandle_unit_test subj_ranges_unit_test

blastn phiblast_unit_test tblastn

blastoptions_unit_test prelimsearch_unit_test tblastx

blastp project_tree_builder tracebacksearch_unit_test

blast_services_unit_test psibl2seq_unit_test traceback_unit_test

blastsetup_unit_test psiblast uniform_search_unit_test

blast_unit_test psiblast_iteration_unit_test update_blastdb.pl

Managing Bioinformatics Software

23

blastx psiblast_unit_test version_reference_unit_test

convert2blastmask pssmcreate_unit_test windowmasker

datatool pssmenginefreqratios_unit_test windowmasker_2.2.22_adapter.py

deltablast querydata_unit_test writedb_unit_test

We can now run the programs using an absolute path, and by adding the bin directory to our PATH we

could make them accessible anywhere.

$ /home/andrewss/blast/bin/blastn

BLAST query/options error: Either a BLAST database or subject sequence(s)

must be specified

Please refer to the BLAST+ user manual.

Compilation troubleshooting

The most common point of failure when compiling software happens at the configuration stage and is

the result of missing dependencies. This could be dependencies which are completely absent, those

which are partially present but parts are missing, and those which are present but are not the specific

version the program requires.

For example, the text below is the end of a configure session which failed. In this case one of the

libraries required was found, but the version found was too old to use:

checking zlib.h usability... yes

checking zlib.h presence... yes

checking for zlib.h... yes

checking if zlib version >= 1.2.5... no

checking whether zlib support suffices... configure: error: zlib library

and headers are required

To work out how to fix this we need to talk a bit about how shared libraries work. A shared library (which

is what you pretty much always use in this type of compilation) is simply an independently packaged

set of code which is designed to be used by many different programs on a system. When you compile

a program which relies on a shared library the code from the library isn’t incorporated into your

executable, but instead your executable ‘links’ to it, so that it can refer to the code sitting in a separate

file rather than having to duplicate it. This means that you can update a shared library on a system

without having to recompile all of the programs which use it.

There are two parts to a shared library. The main part is a shared object file (usually with a .so file

extension), which is the compiled code the library provides. When running a dynamically linked program

this binary file is all that is needed.

The other part to a library is the ‘header’ file. This is a text file (usually with a .h file extension) which

lists the functions and variables the library provides so that the program knows how to use them. These

header files are only required when compiling programs against the shared library, and often aren’t

installed by default when the object files are installed.

If a dependency is missing or out of date you have a few options therefore:

The library is installed but the headers are not

If you are using a system installed library you will often find that only the object files are installed. For

each library package there is usually a corresponding header package which you’ll need to install to be

able to compile against it.

Managing Bioinformatics Software

24

On RedHat/CentOS systems the header package appends –devel to the end of the normal library

name, so the header package for zlib-1.2.3-29 would be zlib-devel-1.2.3-29.

On Debian/Ubuntu/Mint systems the header package appends –dev to the end of the normal library

name, so the header package for zlib1g_1.2.8 would be zlib1g-dev_1.2.8.

If you are missing the header package for a system installed library you can therefore simply use your

system’s package manager to install the missing headers.

Neither the library nor the headers are installed, but they are in the system package repository

If the library and its associated headers are missing then the easiest way to install them is from your

OS’s package repository, you just need to make sure that you install both the binary and header

packages.

The OS doesn’t have the library you need, or the OS library version is too old

If you can’t install the dependency you need via your OS package manager then you’ll need to install it

manually. Installing a library is exactly the same as installing a source distribution of a software package

with the same download, unpack, configure, make, make test, make install routine. By default

libraries will install under /usr/local where they will be automatically detected by the system ahead

of any system copies of the library and things will just work.

Sometimes, however, you may need to install the library somewhere else on the system (for example,

if you don’t have permission to write into /usr/local. For the compilation of the library you’d do this

by setting the prefix option during configure, but you’ll need to take some extra steps to have the

library recognised by the compiler when you come back to compiling your original software package.

There are two stages at which your new library needs to be recognised, during compilation and when

the compiled program is being run. All of these steps can be achieved by modifying environment

variables.

For the compilation step you need to tell the compiler where both the header and object files are for

your library. You tell it about the header files by modifying the CPPFLAGS environment variable, and

the object files using the LDFLAGS variable.

For the CPPFLAGS you’re adding options to the standard compilation so you need to put in -

I/include/dir/location for each additional directory you want to include.

For the LDFLAGS it’s the same idea but you need -L/lib/dir/location.

If you have multiple entries you separate them by spaces. The example below shows how to set the

environment to add 2 non-standard library locations.

export CPPFLAGS="-I/bi/apps/zlib/1.2.8/include/ -I/bi/apps/bzip2/1.0.6/include/"

export LDFLAGS="-L/bi/apps/zlib/1.2.8/lib -L/bi/apps/bzip2/1.0.6/lib"

Since these variables are only needed at compile time you don’t normally need to add them to your

permanent environment.

When the compiled program is running it will still need to find the object files for these libraries so you

need to make a permanent change to your environment so they are visible. In this case the variable

you need to change is the LD_LIBRARY_PATH. You should append the directories you want to include

to the front of the existing value for this variable. Since you’ll need this addition to be permanent you

should make this change in your ~/.bashrc file where it will be applied every time you start a new

session.

Managing Bioinformatics Software

25

export LD_LIBRARY_PATH=/bi/apps/zlib/1.2.8/lib: /bi/apps/bzip2/1.0.6/lib:$LD_LIBRARY_PATH

Managing Bioinformatics Software

26

Extending other languages

As well as installing new software, the other common installation you will need to do is to add extensions

to an existing package, normally a programming language. Sometimes these can add functionality you

can use when writing scripts in that language, but in some cases they will actually add complete new

software packages.

Here we’ll go through the most common types of installation in some of the most common software

environments you’re likely to encounter.

Installing R packages

R has become one of the core technologies which bioinformaticians rely on for their day to day work.

The core R language is relatively compact and most of the scientific analysis routines are provided by

additional packages which you can use to extend the language. We’ll look at how to install these

packages from the most common sources.

Core packages from CRAN

The R developers have an official package repository which is directly integrated into the R language

and can be used to install a large number of additional packages. This repository is called the

Comprehensive R Archive Network (CRAN) and can be viewed at https://cran.r-project.org/.

Installing packages from CRAN can be done within any R session. You use the install.packages

function to install a package from CRAN. For example:

install.packages(“RColorBewer”)

…will install the RColorBrewer package. If you have sufficient privileges to write into the main R

installation then the package will be installed for all users. If not then R will make a local package

repository for you and install the package just for you in there.

When you first run this on a system you will be asked to select a mirror to use for the downloads. You

can select a mirror which is geographically close. If you have a slightly older version of either R or the

curl libraries on which R depends you may find that your R doesn’t support https transport. In this case

you’ll need to look for the option to use a normal http mirror (option 29 in the example below) and then

select from that list.

--- Please select a CRAN mirror for use in this session ---

HTTPS CRAN mirror

 1: 0-Cloud [https] 2: Austria [https]

 3: Belgium (Ghent) [https] 4: Chile [https]

 5: China (Beijing 4) [https] 6: Colombia (Cali) [https]

 7: France (Lyon 1) [https] 8: France (Lyon 2) [https]

 9: France (Paris 2) [https] 10: Germany (Münster) [https]

11: Iceland [https] 12: Italy (Padua) [https]

13: Japan (Tokyo) [https] 14: Mexico (Mexico City) [https]

15: New Zealand [https] 16: Russia (Moscow) [https]

17: Serbia [https] 18: Spain (A Coruña) [https]

19: Spain (Madrid) [https] 20: Switzerland [https]

21: UK (Bristol) [https] 22: UK (Cambridge) [https]

23: USA (CA 1) [https] 24: USA (KS) [https]

25: USA (MI 1) [https] 26: USA (TN) [https]

https://cran.r-project.org/

Managing Bioinformatics Software

27

27: USA (TX) [https] 28: USA (WA) [https]

29: (HTTP mirrors)

Many R packages are distributed as binary packages, but a lot will require you to have a minimal build

environment on your machine (make, gcc etc). Some of the packages might also need additional

header packages to be available for their compilation (the XML package would require the libxml2

headers for example).

Bioconductor packages

Bioconductor is an independent package repository dedicated to packages performing biological

analyses. It enforces coding and documentation standards on the packages it supports as well as using

some common data structure standards to make inter-operability between packages better. It can be

found at http://bioconductor.org/.

Bioconductor is not integrated into the R language in the same way that CRAN is, so to use it you need

to install the code for the bioconductor package manager, called biocLite. To do this you need to run

some code direct from the bioconductor web site.

source("https://bioconductor.org/biocLite.R")

As with CRAN mirror selection it’s possible that your version of R doesn’t support https, in which case

you’d just modify the URL to use http.

The first time you use bioconductor you need to install all of the base code by running:

biocLite()

After this new packages can be added by running:

biocLite(“package_name”)

For example, to install DESeq2 you would run:

biocLite(“DESeq2”)

Installation from Github

For new packages which are still in development and haven’t yet been submitted to CRAN or

Bioconductor it is fairly common to host these on github. Whilst it is possible to do a manual installation

by downloading the latest code release from the site, there is an easier way to pull a package from

github straight into R.

This method is provided by an R package called devtools. This package is in CRAN so you can

install it from there. It provides wrappers for installing from github, bitbucket and arbitrary git

repositories. Github is probably the most commonly used of these, but they all work in a similar way.

To use devtools to install from github you simply load the devtools package and then call

install_github, passing a string which incorporates the username of the user hosting the

repository, and the repository name.

For example, to install the atSNP package from https://github.com/chandlerzuo/atSNP you would do:

library(devtools)

install_github("chandlerzuo/atSNP")

https://github.com/chandlerzuo/atSNP

Managing Bioinformatics Software

28

Manual installation

All of the methods above are wrappers around the core R offline installation method. In this method of

installation you need to download or create a tar file for the package you want to install. This is a

specially structured file with a directory and file structure R will recognise.

Unlike in other tar based installations, in this case you do NOT expand the tar file yourself. Instead you

need to pass the entre tar file as an argument to R. The command you need is:

R CMD INSTALL [tar file location]

You would normally want to install this for all users, so you will probably want to run this via sudo to

run it as root.

For example, if I download the vioplot distribution from https://cran.r-

project.org/src/contrib/vioplot_0.2.tar.gz I can install it using:

R CMD INSTALL vioplot_0.2.tar.gz

* installing to library '/bi/apps/R/3.3.0/lib64/R/library'

* installing *source* package 'vioplot' ...

** R

** preparing package for lazy loading

** help

*** installing help indices

** building package indices

** testing if installed package can be loaded

* DONE (vioplot)

https://cran.r-project.org/src/contrib/vioplot_0.2.tar.gz
https://cran.r-project.org/src/contrib/vioplot_0.2.tar.gz

Managing Bioinformatics Software

29

Installing Perl Modules

Perl has a central repository of modules called CPAN (the comprehensive Perl Archive Network) and

most Perl modules will be installed from here. As with other languages there are easier and harder

ways to achieve this depending on the level of control you need.

Perl modules sit in a structured file hierarchy based on the name of the module. Each Perl installation

comes with a default set of base folders into which modules will be installed, and if possible it’s a good

idea to put new modules into one of these since they will then be recognised by all users of the system.

You can see where the global folders for Perl module installation are by running perl -V. The folders

are stored in a structure called @INC.

@INC:

 /bi/apps/perl_modules/lib/perl5/x86_64-Linux-thread-multi

 /bi/apps/perl_modules/lib/perl5

 /bi/apps/perl_modules/share/perl5/

 /bi/apps/perl_modules/lib/perl5/x86_64-Linux-thread-multi

 /bi/apps/perl_modules/lib64/perl5

 /usr/local/lib64/perl5

 /usr/local/share/perl5

 /usr/lib64/perl5/vendor_perl

 /usr/share/perl5/vendor_perl

 /usr/lib64/perl5

 /usr/share/perl5

 .

You can see that the current directory (a single dot) is included in this list, so one option is that you can

install a module in your current directory if it’s only needed for one script, however most of the time you

want to put them in a more permanent location.

You can also set up local repositories for Perl if you do not have permission to write to the global

directories. There is no standard location for personal repositories so you can put it wherever you like.

You will however need to tell Perl where to find it.

When you’ve set up a new personal repository you can’t directly add it to @INC (not without recompiling

Perl at any rate), but there are two other options to making it be recognised. One of these is to add an

environment variable called PERL5LIB to your environment. This can contain a set of directories which

will be added to @INC dynamically at run time. The other option is that within your Perl script itself you

can manually add directories to the search path by including one or more lines like:

use lib “/dir/with/modules/in/it”;

This will change the module search path just for that script.

Installing from OS repositories

Possibly the simplest way to install new Perl modules is to use bundled modules which are part of your

OS package repository. Any OS package which relies on a Perl module will have had to either

incorporate that code into the package, or more normally will have made a package just for that Perl

module. For example, on Redhat/Centos the name of the modules is simply the Perl module name with

the :: replaced by - and with perl- prepended to the name, so Net::IP would be perl-Net-IP.

Installation of these packages would be the same as for any other OS package.

Managing Bioinformatics Software

30

Automatic installation with the CPAN module

The next easiest way to install a Perl module is – use a Perl module. Specifically the CPAN module is

designed to make it easy to install modules and their dependencies from CPAN. Perl ships with a set

of ‘core’ modules – modules which are guaranteed to be present with any installation of Perl, and the

CPAN module is one of these so if you have Perl, then you can use it.

The easiest way to use the CPAN module is to invoke it from a command line.

perl –MCPAN –e ‘shell’

The first time you do this you will be asked a bunch of questions about where you want to store and

build your modules, any parameters you want to add to the default options, which mirror you want to

use, and whether you want to automatically install dependencies. Generally the default answers to

these questions are all sensible so you can just press return a bunch of times.

This will get you a prompt which looks like this:

cpan>

Which is the CPAN shell. To install a module you simply run:

install Module::name

You will see a lot of text scroll past as the module downloads, configures, compiles and installs all of

the modules and dependencies you need.

One thing which sometimes gets set strangely is the policy for installing dependencies. The default for

this is to ask you whether you want to add the new package to the list to install which gets really

annoying for big installs. To change this so dependencies will be automatically installed, start the CPAN

shell and then use:

cpan> o conf prerequisites_policy follow

cpan> o conf commit

To make dependency installation automatic for future installs.

If you want to change the options the CPAN shell is using then you can run the following command in

a CPAN shell.

o conf init

..and it will re-run the initial setup (your existing settings will be the defaults so just change what you

need to).

Manual installation

The manual installation of a Perl module requires that you first locate and download a tar.gz file for the

module you want to install. You can get these direct from the cpan.org website or any other source.

Once you have the tar.gz file you need to uncompress it. This should generate a folder with the same

name as the module. To start the installation you would then move into the newly created folder.

There are two different systems used to build Perl modules. Older modules used a system called

ExtUtils::MakeMaker but some newer modules use a system called Module::Build. The two

systems have slightly different commands to use, but both follow the traditional compilation steps:

Managing Bioinformatics Software

31

1. Configure

2. Make

3. Test

4. Install

In each case there are no commands which are specific to an individual module – all modules use the

same commands.

The way to tell which system a given module uses is to look at the files in the top level of the installation

folder. If you see a file called Makefile.PL then this is a MakeMaker module. If you see a file called

Build.PL then it’s a Module::Build module.

For make maker the commands you need are:

perl Makefile.PL

If you want to install in a custom location then you can change this to:

perl Makefile.PL INSTALL_BASE=/my/perl/dir

This is then followed by

make

make test

make install

If you want to install globally then the make install command will need to be run from an account with

sufficient privileges to write into the global installation folders. This could be by switching accounts, or

by using sudo.

For a module build module the equivalent commands are:

perl Build.PL

To customise the install location you’d use:

perl Build.PL --install_base /my/perl/dir

This is then followed by:

./Build

./Build test

./Build install

Again, the final command will need to be run with suitable privileges.

Managing Bioinformatics Software

32

Installing Python Packages

Python too has the ability to install extensions to the core language, called packages. As with R and

Perl it comes with tools to automate the installation and dependency resolution within the package set.

One complication with Python is that it is very common to have two separate python installations on

your system, one for python2 and one for python3 so you need to be careful to check which version

you are using. Where both versions of Python are installed, the python 3 installation can normally be

unambiguously addressed using programs such as python3 and pip3 rather than just python and

pip, but if you’re not sure you can use which Python to double check which installation you’re using.

Python will search for packages defined in a set of directories on your system. Some of these will be

locations hard linked to the location of the python installation, but you can add folders to the

PYTHONPATH environment variable to make Python search in other locations for installed packages.

To see the full list of searched directories you can use the sys.path() function in Python.

$ python

Python 2.7.3 (default, Feb 15 2013, 11:09:45)

[GCC 4.4.6 20110731 (Red Hat 4.4.6-3)] on Linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import sys

>>> print ("\n".join(sys.path))

/bi/apps/python/2.7.3/lib/python27.zip

/bi/apps/python/2.7.3/lib/python2.7

/bi/apps/python/2.7.3/lib/python2.7/lib-dynload

/bi/apps/python/2.7.3/lib/python2.7/site-packages

/bi/apps/python/2.7.3/lib/python2.7/site-packages/ipython-0.13.1-py2.7.egg

/bi/apps/python/2.7.3/lib/python2.7/site-packages/ply-3.4-py2.7.egg

/bi/apps/python/2.7.3/lib/python2.7/site-packages

Automatic installation with pip

Python actually has more than one system which can potentially manage its packages, but the most

commonly supported package manager is pip, and this is probably the best one to use for most

purposes.

Although pip will often be shipped along with python it is not required to be, so it’s possible that you’ll

find a Python installation which doesn’t have pip available. It’s also worth checking to see if pip might

be present but not in the PATH. In some Python installations pip is included in a Scripts sub-directory

of the main installation, and that may not be in the PATH.

To check for the presence of pip you can run:

pip --version

This will give an error if pip is not present. If it’s not available then there are a few ways to get it. If

you’re using your operating system’s version of Python then there may well be a separate package for

pip and that will be the best way to install it. For example something like:

sudo apt install python-pip

sudo yum install python-pip

Managing Bioinformatics Software

33

Would work for the Python installs on Debian/Ubuntu or RedHat/CentOS.

If you’re not using an OS provided version of Python then you should be able to install pip using a

package which should ship with python.

python –m ensurepip --default-pip

If even that doesn’t work then the last resort is to download the get-pip.py script from

https://bootstrap.pypa.io/get-pip.py and run it. This should install pip and all dependencies.

Once you have pip available then installing packages from the main Python Package Index (PyPI) is

easy:

pip install vectormath

By default pip will try to install the package into the global package repository on your system so that it

is available to all users. This will normally require admin privileges to work so you will need to run the

command through sudo.

If you want to use pip to install a package but you either don’t have admin privileges, or you only want

to install for you then you can use:

pip install --user vectormath

Which will use a Python package repository in your home directory.

In addition to installation you can also use pip to upgrade a package which is already installed to the

latest version.

pip install --upgrade vectormath

..and you can even remove packages (as long as they were originally installed using pip)

pip uninstall vectormath

Manual installation

You can also do a more manual installation of Python packages following a very similar recipe to the

one we saw previously with Perl. The source for packages is distributed as a tar.gz file so you’ll need

to download that from PyPI or wherever the source of the package is. Once you have that then the

actual installation is relatively straight forward. The package itself should contain a configuration and

installation script called setup.py, so all you need to do is to run:

python setup.py install

This will do the configuration checking, compilation (if needed) and installation of the files to their final

location. Other package dependencies will not be automatically resolved in this mode of installation so

you’ll need to install them manually. Other compilation issues, particularly in C components may also

fail and you’ll need to resolve these in the same way you would for a C program installation before

retrying the setup.py command.

https://bootstrap.pypa.io/get-pip.py

Managing Bioinformatics Software

34

By default the packages will install into the standard system library folder, which should already be in

your PYTHONPATH. You can specify an alternate installation location by running:

python3 setup.py install --prefix=/my/custom/install/folder

What you will probably find is that the install will then fail because the destination folder (which will be

a sub-directory of the folder you actually specify) is not in your PYTHONPATH.

$ python setup.py install --prefix=/bi/scratch/andrewss

running install

error: bad install directory or PYTHONPATH

You are attempting to install a package to a directory that is not

on PYTHONPATH and which Python does not read ".pth" files from. The

installation directory you specified (via --install-dir, --prefix, or

the distutils default setting) was:

 /bi/scratch/andrewss/lib/python2.7/site-packages/

and your PYTHONPATH environment variable currently contains:

 ''

Here are some of your options for correcting the problem:

* You can choose a different installation directory, i.e., one that is

 on PYTHONPATH or supports .pth files

* You can add the installation directory to the PYTHONPATH environment

 variable. (It must then also be on PYTHONPATH whenever you run

 Python and want to use the package(s) you are installing.)

* You can set up the installation directory to support ".pth" files by

 using one of the approaches described here:

 https://setuptools.readthedocs.io/en/latest/easy_install.html#custom-

installation-locations

Please make the appropriate changes for your system and try again.

The fix is to then add this folder to your PYTHONPATH (preferably in a way which makes the change

permanent), and then run the command again, where it should then succeed.

Managing Bioinformatics Software

35

Software package installation with CONDA

Earlier in the manual we talked about using your operating system’s package manager to install

software packages which have been prepared to run on your system. This is a very convenient way to

install core software and libraries and is the basis for software maintenance in most modern Linux

distributions.

There is now a project called CONDA which provides a similar service to your operating system’s

package manager, but in a distribution agnostic manner, meaning that it can be used on a variety of

different operating systems. This is an open repository which allows people to submit recipes for new

applications which weren’t supported before, and it now contains an impressively large number of

applications.

Whilst CONDA is not tied to any particular type of software, there is a sub-project called BioCONDA

which has a focus on the packaging of bioinformatics software. This can be a very quick and easy way

to get the software you want to be available easily.

CONDA Usage

Installation

To start using CONDA you need to install the base system on your machine. This actually

encompasses a complete python installation which contains the Anaconda installer. The simplest way

to get this is to use the Minconda Python distribution.

You can install Miniconda into your home directory by using the auto-install bash script distributed by

the project. Simply download and run:

https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh

..and the conda command will be available in your shell.

Setting up channels

If you want to be able to use the BioCONDA packages then you’ll need to configure your installation to

know about the BioCONDA repository. To do this you need to run:

conda config --add channels bioconda

conda config --add channels conda-forge

You only need to do this once and the settings will be remembered.

Installing software

Once conda is installed and the channels are configured then you can install new software packages

as follows:

conda install bwa

This will install the bwa package, plus any dependencies and will make it immediately (and permanently)

available in your shell

One other issue which conda can address is what to do when you need more than one version of an

application to be installed, or if you have multiple applications you want to install which are

fundamentally incompatible with each other (conflicting dependencies). The solution for this in conda

https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh

Managing Bioinformatics Software

36

is to create a custom environment. An environment is an isolated set of package installations and you

can switch between environments whenever you like.

To install packages into a new environment you can do:

conda create -n aligners bwa bowtie2 hisat2

This will create a new environment called “aligners” and will install bwa, bowtie2 and hisat2 into it. Once

the installation is complete you can run:

source activate aligners

..to active that environment to gain access to the programs installed into it. You can later run:

source decativate

..to turn the environment off and get back to your standard set of packages.

Just use conda for everything then?

Given that conda is so simple compared to some of the other methods of software installation it’s fair

to ask why should we not just use this for everything? In many cases conda can be an excellent solution

to quickly gain access to a range of applications, but there are some caveats to using a system like this.

Applications need to be supported in conda

Kind of an obvious one, but in order to use conda your application needs to be supported by an existing

recipe. If there isn’t a recipe then you can’t use it to install the application. You’re also tied to whatever

version of the software they support in the recipe – if there is an update it may not appear in conda

immediately.

Conda should be treated as a closed system

In exactly the same way that we saw for the operating system’s package manager, conda only knows

about applications that it has installed itself. In order to guarantee compatibility it won’t rely on copies

of applications which may be available already on your system, but will install and use its own versions.

This firstly means that you can end up with duplication on your system. Applications you have installed

by other mechanisms will be duplicated within conda. Also, if you are maintaining a system for others

to use then the model conda uses means that you are likely to get duplication between different users

on the same system, which means everyone gets their own copy of an application, which can cause

issues when troubleshooting. If you use environments within conda then you will also get duplication

between these – the same application installed into different environments will cause a new copy of the

files for that application to be downloaded and installed.

Finally, the closed nature of conda can cause problems if you use programs installed within conda to

interact with other parts of your system. For example we’ve seen problems if you try to install R or

Python packages from a conda version of R or Python using the libraries and compiler available on your

system. Some packages can be installed directly through conda, but incompatibilities can arise if you

start to mix and match parts of your operating system with software installed through conda.

The bottom line is that conda can be great as long as everything you need for a given application is

directly available in the conda repositories already.

Managing Bioinformatics Software

37

Running Containerised applications

A major development in the distribution of applications or pipelines in recent years has been the use of

containers. These are a mechanism through which a controlled environment containing one or more

applications and associated data. The container can then be used to either provide an interactive

environment where you can use the applications and data defined in it, or by including a master program

in the container you can treat it as if it was an application and use it as a black box to process new data

or reproduce previous analyses.

What types of container are there

The mostly commonly used container format is Docker (https://www.docker.com/), however Singularity

(https://www.sylabs.io/singularity/) containers are now becoming increasingly popular.

Both of these systems can be used to package up applications in a portable fashion and both are widely

used. Singularity is more directly focused on scientific reproducibility and some of the containers it

offers are fairly heavy as they bundle large datasets and pipelines as well as the application which are

run in them.

On a practical level, one big difference between docker and singularity is that docker containers are

designed to be installed by root, and using docker requires admin privileges. Singularity on the other

hand can be used by conventional users if they just want to re-use an existing container (creating new

containers locally requires root). Since singularity can also transparently use docker containers we are

going to focus on the use of singularity to run containerised environments on our Linux systems.

Finding a container

Whilst it is possible to create containers locally and use them in a similarly local fashion, the point of

containers is to be able to share them between users and systems. You will therefore most commonly

obtain your container from a public repository.

 DockerHub (https://hub.docker.com/) is the main repository of docker images.

 SingularityHub (https://singularity-hub.org/) is the main repository of singularity images.

Both of these sites have search engines which are generally a bit rubbish, but if you know the name of

a given pipeline or application then you can normally find an image which contains what you want. For

popular applications you should be aware that there are likely to be multiple containers which have that

application and you may want to look at what else is in the container, and if there are any user comments

which highlight problems.

Containers should have some documentation with them to say what they are designed to be used for,

but you may well find that this is either terse or completely absent in many cases.

What you need to obtain is the name of the container within the system, eg “qiime2/core” or

“dleehr/qiime2-singularity”. You’ll also need to know whether the repository was on docker or

singularity hub.

https://www.docker.com/
https://www.sylabs.io/singularity/
https://hub.docker.com/
https://singularity-hub.org/

Managing Bioinformatics Software

38

Installing a container with singularity

Installing Singularity

Before you can start to use a container you will need to install the actual singularity application. If you

are on Debian/Ubuntu then singularity is in the standard package repository and you can install it with;

sudo apt install singularity-container

[Note that ‘singularity’ is a different package (it’s a game) – you need ‘singularity-container’]

On other systems you can install the 2.x.x. versions of singularity by downloading the latest release

from the github project page. It comes as a standard autotools distribution so you can use the standard

configure/make/make install routines to install it.

For singularity v3.x.x the project has switched from writing in C to writing in Go, so the install is a bit

more complicated. Instructions for doing this can be found in the singularity documentation.

Installing a container

Once you have singularity installed then you can download a container from either docker or singularity

hub.

Eg:

singularity pull shub://dleehr/qiime2-singularity

..or from docker..

singularity pull docker://qiime2/core

This will generate a local .simg file which you can use to run the container. The file will be given a name

based around the URL from which it was downloaded, eg dleer-qiime2-singularity-master-latest.simg,

which can be a bit of a mouthful. If you want to give the local file a shorter name then you can do:

singularity pull --name qiime.simg shub://dleehr/qiime2-singularity

..which will allow you to specify the filename you want to use.

Running a container

Once you have the container image file on your local system then you can run it to be able to access

the functionality it contains.

There are two main ways to run a container. The most flexible is to start a shell session within the

container. This will allow you to access the software contained in the container.

singularity shell qiime.simg

This will move your shell into the container. You will still be able to see the files you had in your home

directory, but the rest of the system will be replaced with the contents of the container system. You

won’t be able to mix and match between running applications in your base OS and those in the

container.

Managing Bioinformatics Software

39

The other method of execution is to run the container as an application. You can do this either by

explicitly calling the run method for the container.

singularity run qiime.simg

..or, more simply, you can simple execute the image file directly.

./qiime.simg

In either case what this does is to open a shell into the container and then run the /singularity program.

The person building the container can configure what actions this actually performs, but you can treat

the whole thing as if it’s a conventional application, even if it’s doing something way more complex in

the background.

Managing Bioinformatics Software

40

Debugging

To finish with we’re going to trying to give some ideas of how to diagnose, debug and fix problems when

trying to run a program in Linux.

The program won’t start at all

Here we’re assuming that the error you get when you try to launch the program doesn’t come from the

program itself (ie to say that the options you’ve set are wrong or something like that), but are a more

generic error from the operating system.

Check you’re definitely running the program you think you are

Start simply – assuming you’re just running something like myprogram from a shell then make sure

that you’re launching the file you think you are:

which myprogram

In case there is some ambiguity about this you can check for other instances of myprogram later in the

PATH using.

which -a myprogram

If this doesn’t find anything then either the program isn’t installed, or it’s installed somewhere which isn’t

in the PATH, or it’s installed into the PATH, but doesn’t have execute permissions.

Check the permissions on the file

In order to be able to run a program you need certain permissions.

1. You need to be able to read the program file and any other files it needs to read to run

(configurations, libraries etc).

2. You need to have the execute bit set on the program.

3. You should check for any unnecessary permissions, particularly SUID or SGID

In general, if you’re not sure then chmod 755 myprogram is probably the correct permissions for it to

have.

If it’s a script, check the shebang line

Look at the first line of the script, make sure that it starts with the correct structure of shebang line, eg

something like:

#!/usr/bin/python

Check a few things. Stop when it works!;

Managing Bioinformatics Software

41

1. Check the shebang is definitely on line 1 (no previous blank lines) and has the correct structure

2. Check the location of the interpreter is the same on your system. If it’s not either update it to

the new location or use the /usr/bin/env program to set the interpreter from the PATH

3. Check if you can run the script if you run /usr/bin/python [scriptname] rather than

relying on the shebang line at all

4. Try putting -- after the interpreter, eg #!/usr/bin/python -- Sometimes odd line endings

can mess up the ability of the shell to find the interpreter.

If it’s a binary file check for broken links

Run ldd [program name] and look for anything where a link is required but not found. If the

corresponding library isn’t on your system then you’ll need to install it. If it is on the system, but not

being found, then modify your LD_LIBRARY_PATH to include the directory where the library can be

found and then try again. It can also be helpful to run file [program name] just to double check

that the file you’re trying to execute actually is a program file!

The program gives an error when you run it

Errors from within a piece of software are much more varied, since they will often be the result of how

the program is launched. Some generic pieces of advice though:

Read the error messages!!

Software authors usually go to great efforts to try to tell you (as best they can) why something isn’t

working. Reading the error they give is the quickest way to try to understand what’s gone wrong.

One thing to remember is that the most relevant error may not be the last thing printed by the program.

Often when things die, finding the most relevant error is the biggest problem.

Some things to remember:

Many command line applications will respond to incorrect launch options by printing an error and then

printing the help page for the program. This can push the actual error off the screen so you need to

scroll up to find it.

In general you want to find the earliest error in a large set of errors, because when something starts to

go wrong it can trigger a cascade of failures. Often the total amount of error output can be large, so

you might be better off to save the output from the launch to a file (remembering that errors go out on

STDERR so you need to use 2>[somewhere] to save them, and then looking for error in a program like

less to find the initial problem.

In some languages (eg Python and java) an error will often come with a ‘stack trace’ which is the set of

internal calls which were being followed when the error was triggered. It’s worth noting that different

languages structure these differently. For example, java writes a stack trace with the most recent call

at the top and older calls further down, so the more informative error is at the top. Python, on the other

hand, does this the other way around and puts the newest call at the bottom. Figuring out which end

of the trace to look at can help to focus on the actual cause of the error.

Managing Bioinformatics Software

42

Check arguments and file paths

For command line programs, by far the two most common mistakes made are:

1. People type the name of an option wrongly, or mess up the spacing between options, eg:

a. --gnome instead of --genome (check your spelling!)

b. --genome=Human instead of --genome Human (some programs will accept either,

but it varies)

c. --quiet--genome Human instead of --quiet --genome Human (spaces matter!)

d. --genome Homo sapiens instead of --genome “Homo sapiens” (can’t have

spaces in arguments without using quotes)

2. People get file paths wrong, and spell folders or file names incorrectly. Always use command

line completion to fill in the names of files – even if they’re really short. You can’t make a

spelling error if you used tab to complete the file name.

